Three-phase half-wave Cycloconverters 3Φ to single phase conversion can be achieved using either of the dual converter circuit topologies shown below: A Thevenin equivalent circuit for the dual converter is shown next slide: The input and output voltages are adjusted to be equal and the load current can flow in either direction. Thus, $$V_0 = V_d = V_{d0} \cos \alpha_p = -V_{d0} \cos \alpha_n$$ where V_{d0} is the dc output voltage of each converter at zero firing angle and α_p and α_N are the input and output firing angles. For a 3Φ halfwave converter V_{d0} =0.675 V_L and V_{d0} = 1.35 V_L for the bridge converter (V_I is the rms line voltage). Voltage-tracking between the input and output voltages is achieved by setting the sum of the firing angles to π . Positive or negative voltage polarity can be achieved as shown below: A 3Φ to 3Φ cycloconverter can be implemented using 18 thyristors as shown in next slide: Each phase group functions as a dual converter but the firing angle of each group is modulated sinusoidally with $2\pi/3$ phase angle shift -> 3Φ balanced voltage at the motor terminal. An inter-group reactor (IGR) is connected to each phase to restrict circulating current. An output phase wave is achieved by sinusoidal modulation of the thyristor firing angles. A variable voltage, variable frequency motor drive signal can be achieved by adjusting the modulation depth and output frequency of the converter. ## Cycloconverter Circuits for Three-phase Output A 3Φ to 3Φ bridge cycloconverter (widely used in multi-MW applications) can be implemented using 36 thyristors as shown below: The output phase voltage v_0 can be written as: $$v_0 = \sqrt{2}V_0 \sin \omega_0 t$$ where V_0 is the rms output voltage and ω_0 is the output angular frequency. We can also write: $$v_0 = V_{d0} \cos \alpha_p = -V_{d0} \cos \alpha_n = m_f V_{d0} \sin \omega_0 t$$ where the modulation factor, m_f is given by: $$m_f = \sqrt{2}V_0 / V_{d0}$$ From these equations, we can write: $$\alpha_p = \cos^{-1}[m_f \sin \omega_0 t]$$ and $$\alpha_N = \pi - \alpha_P$$ Thus for zero output voltage, m_f=0 and α_p = α_N = $\pi/2$. For max. phase voltage, m_f=1 => α_p =0, α_N = π . See below figure for $\alpha_{\rm P}$ and $\alpha_{\rm N}$ values for m_f=0.5 and 1. - The phase group of a cycloconverter can be operated in two modes: - 1) Circulating current mode - 2) Non-circulating current (blocking) mode In the circulating current mode, the current continuously circulates between the +ve and -ve converters. Although the fundamental output voltage waves of the individual converters are equal, the harmonics will cause potential difference which will result in short-circuits without an IGR